How Has Technologies Affected The Planet And What Steps Are Being Taken To Prevent Them?

Tootsie Duggen, Wilfred Guthrie, Matteo Farmery

Результат исследований: Прочий научный вкладДругие материалы

Аннотация

Technology ("science of craft", from Greek τέχνη, techne, "art, skill, cunning of hand"; and -λογία, -logia) is the sum of any techniques, skills, methods, and processes used in the production of goods or services or in the accomplishment of objectives, such as scientific investigation. Technology can be the knowledge of techniques, processes, and the like, or it can be embedded in machines to allow for operation without detailed knowledge of their workings. Systems (e.g. machines) applying technology by taking an input, changing it according to the system's use, and then producing an outcome are referred to as technology systems or technological systems. The simplest form of technology is the development and use of basic tools. The prehistoric invention of shaped stone tools followed by the discovery of how to control fire increased sources of food. The later Neolithic Revolution extended this, and quadrupled the sustenance available from a territory. The invention of the wheel helped humans to travel in and control their environment. Developments in historic times, including the printing press, the telephone, and the Internet, have lessened physical barriers to communication and allowed humans to interact freely on a global scale. Technology has many effects. It has helped develop more advanced economies (including today's global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products known as pollution and deplete natural resources to the detriment of Earth's environment. Innovations have always influenced the values of a society and raised new questions in the ethics of technology. Examples include the rise of the notion of efficiency in terms of human productivity, and the challenges of bioethics. Philosophical debates have arisen over the use of technology, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and similar reactionary movements criticize the pervasiveness of technology, arguing that it harms the environment and alienates people; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition. Affect may refer to: Affect (education) Affect (linguistics), attitude or emotion that a speaker brings to an utterance Affect (philosophy) Affect (psychology), the experience of feeling or emotion Affect display, signs of emotion, such as facial expression, vocalization, and posture Affect theory Affective science, the scientific study of emotion Affective computing, an area of research in computer science aiming to understand the emotional state of users Reduced affect display, a.k.a. emotional blunting or affective flattening, a reduction in emotional reactivity Pseudobulbar affect, a.k.a. labile affect, the unstable display of emotion Affect (rhetoric), the responsive, emotional feeling that precedes cognition Affected accent; see Accent (sociolinguistics) Affect (company), a defunct Japanese video game developerA planet is an astronomical body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and – according to the International Astronomical Union but not all planetary scientists – has cleared its neighbouring region of planetesimals.The term planet is ancient, with ties to history, astrology, science, mythology, and religion. Apart from Earth itself, five planets in the Solar System are often visible to the naked eye. These were regarded by many early cultures as divine, or as emissaries of deities. As scientific knowledge advanced, human perception of the planets changed, incorporating a number of disparate objects. In 2006, the International Astronomical Union (IAU) officially adopted a resolution defining planets within the Solar System. This definition is controversial because it excludes many objects of planetary mass based on where or what they orbit. Although eight of the planetary bodies discovered before 1950 remain "planets" under the current definition, some celestial bodies, such as Ceres, Pallas, Juno and Vesta (each an object in the solar asteroid belt), and Pluto (the first trans-Neptunian object discovered), that were once considered planets by the scientific community, are no longer viewed as planets under the current definition of planet. The planets were thought by Ptolemy to orbit Earth in deferent and epicycle motions. Although the idea that the planets orbited the Sun had been suggested many times, it was not until the 17th century that this view was supported by evidence from the first telescopic astronomical observations, performed by Galileo Galilei. About the same time, by careful analysis of pre-telescopic observational data collected by Tycho Brahe, Johannes Kepler found the planets' orbits were elliptical rather than circular. As observational tools improved, astronomers saw that, like Earth, each of the planets rotated around an axis tilted with respect to its orbital pole, and some shared such features as ice caps and seasons. Since the dawn of the Space Age, close observation by space probes has found that Earth and the other planets share characteristics such as volcanism, hurricanes, tectonics, and even hydrology. Planets in the Solar System are divided into two main types: large low-density giant planets, and smaller rocky terrestrials. There are eight planets in the Solar System according to the IAU definition. In order of increasing distance from the Sun, they are the four terrestrials, Mercury, Venus, Earth, and Mars, then the four giant planets, Jupiter, Saturn, Uranus, and Neptune. Six of the planets are orbited by one or more natural satellites, the two exceptions being Mercury and Venus. Several thousands of planets around other stars ("extrasolar planets" or "exoplanets") have been discovered in the Milky Way. As of 1 September 2021, 4,834 known extrasolar planets in 3,572 planetary systems (including 795 multiple planetary systems), ranging in size from just above the size of the Moon to gas giants about twice as large as Jupiter, have been discovered, out of which more than 100 planets are the same size as Earth, nine of which are at the same relative distance from their star as Earth from the Sun, i.e. in the circumstellar habitable zone. On 20 December 2011, the Kepler Space Telescope team reported the discovery of the first Earth-sized extrasolar planets, Kepler-20e and Kepler-20f, orbiting a Sun-like star, Kepler-20. A 2012 study, analyzing gravitational microlensing data, estimates an average of at least 1.6 bound planets for every star in the Milky Way. Around one in five Sun-like stars is thought to have an Earth-sized planet in its habitable zone.Prevention may refer to:
Язык оригиналаАнглийский
DOI
СостояниеОпубликовано - 2021

Серии публикаций

Имяcisco.com

Fingerprint

Подробные сведения о темах исследования «How Has Technologies Affected The Planet And What Steps Are Being Taken To Prevent Them?». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать